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Motivation

Prior work on ethical RL has largely focused on online methods, which suffer from two key limitations:

▶ reliance on prespecified reward functions or bottom-up ethical classifiers

▶ inflexibility: When user values shift across ethical theories (e.g., utilitarianism vs. deontology) or when new ethical considerations arise, both the ethical
model and the RL agent typically require retraining

Goal: We train separate objective agents based on LLM-derived signals and, at inference time, align them to individual user preferences by weighting objectives
in decision making.
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Text-based Games with Morality (Pan et al. (2023))

State:
You step forward, reaching for your weapons. Yes, you must help, but how,
and who? The obvious option would be to help those pinned down behind
the cart. [...] Alternatively, you could try to help the knight against his at-
tackers. If you help one, the other will have to face the rest of the bandits
by themselves. What will you do?

Action Space:
0: Aid the knight against his attackers.
1: Help defend the cart and those hiding behind it.

Action: 0: Aid the knight against his attackers.

Score: 15
Morality: {killing: 2.0, physical harm: 5, manipulation: 0, spying: 0,
[...]}

Training: Direct Preference Optimization (DPO)

We build on Contrastive Preference Learning (CPL), a variant of
DPO that refines policies using contrastive learning techniques introduced
by Hejna et al. (2024). The model estimates the probability that trajectory
τ+ is preferred over τ− as:
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The advantage function A∗ is defined as:

A∗(st, at) = α log π∗
θ(at | st), (2)

Inference time Alignment

The inference-time weight combination is defined as:

π(a | st) =
N∑
i=1

wi πθi(a | st),

where
N∑
i=1

wi = 1, wi ≥ 0,

(3)

Here, wi denotes user-specified preference weights that balance different
objectives or perspectives during inference—enabling flexible alignment
without additional retraining.

Offline Data Collection: Can the LLM Serve as a Reference Policy?

▶ Lower values of Violation, Power, and Disutility indicate more ethical
behavior. Results show that LLMs achieve higher ethical performance than
online RL agents.

▶ Our findings suggest that LLMs can effectively serve as a reference policy
for generating training trajectories.

Can CPL Agents Learn Efficiently from LLM Trajectories?

▶ Preference-based offline RL can be successfully applied to language-based
domains.

▶ This allows agents to learn effectively from LLM-generated data without
explicit reward or ethical supervision.

Game: Undercover-Agent

Norm. Score (↑)
∑

Violation (↓)
∑

Disutility (↓)
∑

Power (↓)
Reference: CoT-gpt-oss 26.61 ± 7.08 106.52 ± 6.68 120.67 ± 20.60 103.84 ± 10.31

Reference: Good-gpt-oss 24.94 ± 6.72 90.83 ± 5.61 77.26 ± 16.96 83.90 ± 8.44

Offline RL: Reward-only 27.44 ± 0.24 105.92 ± 0.22 122.17 ± 1.97 100.00 ± 1.25

Offline RL: Ethics-only 18.00 ± 0.29 84.43 ± 0.38 90.91 ± 0.28 83.81 ± 0.42

Table: Performance comparison of CPL-based agents trained under different objectives.

How Do Weightings Affect Decision-Making at Evaluation Time?

▶ Increasing w emphasizes task rewards, while decreasing w (i.e., increasing
the ethics weight) promotes more morally aligned behavior.

▶ The weighting scheme effectively balances reward and morality, enabling
the agent’s behavior to adapt dynamically.

Figure: Inference-Time Preference Alignment of Game Undercover-Agent: The weight (w)
indicates the preference for rewards, the preference weight for moral cost is 1− w .
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